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Abstract 

We wish to compute Lorentz forces, equilibrium stress and stored energy in thin multipole magnets (Fig: I), 
that are proportional to cos (nO) and whose strength varies purely as a Fourier sinusoidal series of the longitudinal 
coordinate z ( say proportional to cos (2mi l

)n where L denotes the half-period and m=I,2,3 ... ). We shall 
demonstrate that in cases where the current is situated on such a surface of discontinuity at r=R (i.e. J=f(O,z)), by 
computing the Lorentz force and solving the state of equilibrium on that surface, a closed form solution can be 
obtained for single function magnets as well as for any combination of interacting nested multi function magnets. 

The results that have been obtained, indicate that the total axial force on the end of a single multipole magnet 
n is independent (orthogonal) to any other multipole magnet i as long as n of i. The same is true for the stored 
energy, the total energy of a nested set of multipole magnets is equal to the some of the energy of the individual 
magnets (of the same period length 2L). Finally we demonstrate our results on a nested set of magnets a dipole 
(n=l) and a quadmpole (n=2) that have an identical single periodicity WI. 

We show that in the limiting 20 case ( period 2L tends to infinity), the force reduces to the commonly 
known 20 case. 

2L 

Figure I View of a full period array of a single function (m=l) quad. 

Lorentz Force on a Surface of Discontinuity 

The Lorentz force density on a thin surface of discontinuityb (per unit area s) may be e~pressed as given by 

iF ~ ~ -
dS = Is = Js x < B > 

where < jj > denotes the average magnetic field on the surface < jj >= illi ff, and J: corresponds to the surface 
current density. In a previous noteOO we derived the magnetic field components inside and outside a current sheet 
for an ideal current density that is proportional to cosine nO. We shall evaluate < B >, compute the Lorentz force 
f, express the equilibrium condition on a surface element and solve for the total force as a function of position (to 
simplify the analysis we have not included contributions from a highly permeable iron yoke). 

b Utility of the Maxwell Stress Tensor for Computing Magnetic Forces - LJackson Laslett, Lawerence Berkeley 
Laboratory, report ERAN -160, August 24 1971. 
C Combined Right and Left Hand Helical Function Magnets, SC-MAG-534, January 1996. 
d Magnetic Field Components in a Sinusoidally Varying Helical Wiggler, LBL-35928, SC-MAG-464, July 1994. 
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The field on the inside, outside and on a current sheet is, 

r::;R : 

r~R : 

r=R: 

We substitute 

Br = - L L Gn,mw",I~(wm l' )sin nO coswmz 
n== l m= l 

1 
Bo = - L L nGn,m -1n(wmr) cos nO cOSWmZ 

r 
n= l m= l 

Bz = L L Gn,mwmln(wmr) sinnO sin wmz 
n= l m= l 

< Br > = - L L Gn,mwmI~(wmR)sin nli cos wmz 
n=! m=l 

(2m - 1)1r 
Wm = L and Gn,m = n!Rn (W~R) n Bn,m 

where n=I,2,3 .... denotes a magnet type such as a dipole, quadrupole etc, nBn•m denotes the dipole, gradient etc 
and m=1,2,3 .... , corresponds to a given periodicity where L is the half period. We consider the term (wnR) to 
be the argument of all Modified Bessel functions In and Kn, and all derivatives of such functions taken to be 
with respect to that argument. 
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We may express the field directly in terms of current density (see following page) 

r::;R : 

r~R : 

'" '" (WmR)2 , , . . Er = J,lo L.J L.J JOn,m n In(wmR)Kn(wmr)smnOcoswmz 
n=l m=l 

'" '" 2 ' Kn(wm!') Eo = J,lO L.J L.J JOn,mwm R In(wmR) r cos nO cos WmZ 
n=l m=l 

Ez = -J,lo L L JOn,m (wm
n
R)2 I;,(wmR)Kn(wm!') sinnOsinwmz 

n=1 m=l 

r=R 

'" '" (wm R)2 , , . < Er >= J,lo L.J L.J JOn,m n In(wmR)Kn(wmR) smnO COS WmZ 
n=lm=l 

J,lo '" '" ' < Eo >= "2 L.J L.J Jon,mwmR[In(wmR)Kn(wmR)] cos nO cosWmZ 
n=1 m=] 

< Ez >= - J,lO '" '" JOn m (WmR)2 [In(wmR)Kn(wmR)j' sin nO sinwmz 
2 L.J L.J ' n 

n=1 m=] 
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Current Density 

In Referencec we have expressed the current density as I = Joeo + Jzez and its components as, 

- 1 
J(O, Z) lr=R = --R 

1'0 

Oe, 
'""' '""' G n,'" . O. • 
~~ 1<:,.(wmR) slIIn SlIIW",zeO 

'""' '""' nGn,,,, 1 0 • D D R (' ( R) cos n coswmzez 
u=l m=l 

Wm lnwm 

Such a pair satisfies the conservation condition '\1 . J: = % + -k~ = 0 as required. 

We may wish to express Gn,m in terms of the current density or the total current per pole (Amp-turn) a 
procedure first introduced in Referencec,. 

or, 

• 

The component of current density at 0=0 and z=O is purely in the z direction I = Jz ez = Jo, therefore 

and the current density, 

G JOn,m 2' ( ) 
11 m = ---J1.oWmR I<n wmR , n 

I(o, Z)lr=R = 

Oer 

'""' '""' JOn m R' O· • D D --'-wm slIIn SlIIwmzeO 
n 

n=l m=l 

L L JOn,m COS nO coswmzez 
n=l m=l 

Integrating the current density, the total Amp-turn Iper polel is, 

" ;;; 

Inm = JonmjcosnoRdO = JOnm R = I' , n 
Cn,m 

o 

Forces in a Thin Cosine(nO) Helical Wiggler, LBL-36988, SC-MAG-495, March 1995 . 
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Figure 2 Forces on a current sheet. The f's are the local Lorentz forces and the P's are the local equilibrium forces, 

Lorentz Force 

The Lorentz force on a current sheet is, 

- dF - -/= -=Jx < B>= 
ds 

ep 

o 
< Bp > 

f = (JO < Bz > -Jz < Bo > )ep + Jz < Bp > eo - Jo < Bp > ez 

We compute the Lorentz force components by substituting the average field and current density, 

x (Wj R sin nf) sin WmZ sin if) sin Wj Z + ~ cos nf) cos WmZ cos if) sin Wj Z) 
wmR 

( 1 ~~ ~~ G G (Wj) I; (wjR) f) , 'f) JO = -R2 L.J L.J L.J L.J n n,m i,j - }(' ( R) cos n cos WmZ sm z cos WjZ 
flO " Wm n Wm n m I J 

/ 
1 ~~~~G G R I;(wjR) , f)' "f) 

Z=--R2L.JL.JL.JL.J n,m i,jWj }('( R)smn smwmzsmz COSWjZ 
flo " nWm n m I J 

Equilibrium 

The equilibrium of a current carrying surface element of)oz requires that, (Fig, 2) 

where the f's are the local Lorentz body forces and the P's are the total equilibrium forces, 
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We shall make the following substitutions : 

1/ Pp 
Pp = Ro(}Sz 

, dPo 
Po = dz 

, dPz 
Pz = RdO 

where P' is a force per unit length and P" is a force per unit area. 

since: 

d(Po eo) p" 
dz = oeo 

d(Pzez) _ p" 
RdO - zez 

deo • 
dO = -ep 

the resulting three differential equations are : 

or 

In solving P; 

we shall make use of, 

o 

cos nO sin iO dO = J ' " 
• -2ii 

, 
" Po 

Pp = -fp + Ii 
dP' 
dOo = -Rfo 

, 
dPz --f 
dz - Z 

, 
Solution to P (} 

, 
dPo = -Rfo 
dO 

cos (n - i)0' _ cos (n + i)l/ 10 • 

2(n -i) 2(n+i)-;;; 
, 

_ cos 2nO 10 • 
471 - 2ii 
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o 

J ' " cos nO sin iii dO = 

• 
-~ 1 

cos (n - i)O cos (n + i)O n . i7r 
-,+-..,f- - - Slll -

2(n - i) 2(n+i) n2 - i2 2n 

cos2 nO 
2n 

so that 

o 

P; = -R J JodO 

1 '" '" '" '" (Wj) I; (wjR) = --:-Ii ~ ~ ~ ~ nGn,mGi,j -;:;- J(' (w R) COSWm Z COSWjZX 
/0 n m i j m n m 

1 
cos (n - i)O cos (n + i)O n . i7r 

- - Slll-
2(n - i) 2(n + i) n2 - i2 2n 

x 
cos2 nO 

2n 

Expressing the force in terms of current density, 

x 

. ' In solvlllg Pz , 

1 
cos (n - i)O cos (n + i)O n . i7r 
---:+--+- - - Sill -

2(n - i) 2(n + i) n2 - i2 2n 

cos2 nO 
2n 

, 
Solution to Pz 

, 
dPz --f 
dz - z 

we shall make use of the following integration, 

z 

J ' , 
sinwmz COSWjZ dz = 

-L 

cos (wm - Wj)z' _ cos (wm +Wj)z' I~L 
2(wm - Wj) 2(wm + Wj) 

, 
cos 2wmz IZ 

- 4 -L Wm 
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z 
COS(Wm - Wj)Z COS(Wm+Wj)Z wm - - + ----;c--'--...,. 

2(wm - Wj) w~ - wJ J ' , 
sinwm z COS Wj Z dz = 

-L 
sin2 wm z 

2wm 
m = J 

Integrating the force between the limits z' = - Land z' = Z the axial force is therefore, 

In =I j 

. 2 
SIn Wm Z 

W'" 
In=J 

and by replacing Go•m with the expression for current density, 

, flO '" '" '" '" (wjR)\wmR) , , . .. Pz = 2" L. L. L. L. ni JOn,m JOi,j Ii(wj R)J(i (Wj R) sm nOsm tOX 
n m i i 

cos(wm-Wj)z cos(wm+Wj)z 2wm - - + ----;c--...,. 
(wm -Wj) (wm +Wj) w~ -wJ 

In =I j 
x 

In =J 

The maximum axial force is at the magnet ends i.e. at Z = i, 

m =I j) 
In =J 

2~ 

The total axial force over the end is,Pz.= -I' = [ p;.= + RdO 
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For I=n 

mol}} 
m=J 

or 

In #J } 
In =J 

and for noli ,Pz = 0 

We note that the total axial force on the end of magnet type n is independent (orthogonal) to any nested 
magnet type i as long as i # n. 

In the above integration we have used, 

2>r J sin nO sin iOdO = e 
o 

" Solution to Pp 

" We express the local radial pressure Pp , which is a reactive compressive pressure directed inwards in the 
-p direction, as : 

, 
" Po 

Pp = -fp+ If 

( ( ) ( ))' [Wj R sin nO sin iO sin WmZ sin Wj z+ ] 
_ 1 LLLLG G. Ii wjR J(i wjR . 
- 2f.toR2 . . n,m ' ,J J(~(wmR)J(,~(wjR) + mRcosnOcosiOcoswmZCOSWjZ 

n m I 1 wm 

1 """" (Wj) I;(WjR) - --2 6666 nG",mGi,j - T.(' ( R) coswmZCOSWjZX 
f.toR .. Wm "n Wm n m 1 J 

1 
cos (n - i)O cos (n + i)O n . i7r 
---::+--+- - - Sill -

2(n-i) 2(n+i) n2-i2 2n 
x 

cos2 nO 
2n 

noli) 

n = i 
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in terms of cutTent density, 

2 [Wj R sin nO sin iO sin Wm Z sin Wjz+ ] 
• poR ~~ '. 

Pp = -2- L L L L Jon ,,,'!oi,j-.-(h(wjR)K;(wjR)) nz 0·0 
. . 111, + -R cos 11 caS 'l cos W7n.Z cos Wj Z 

n. m 1J wm 
2 2'" '" '" '" Wj , , - poR L L L L JO",mJO;,j-. I; (wjR)K;(wjR) COSWmZCOSWjZX 

. . I 
n. m l J 

1 
cos(n - i)O cos(n + i)O n . i7r 
----:-+----,~ - - Sill -

2(n-i) 2(n+i) n2-i2 2n 
x 

cos2 nO 
2n 

The limiting 2D case 

The results of the general force equations can be reduced to the more familiar 2D case by extending the period 
2L --+ 00. We note that for such a limit s = wmR --+ 0 (as well as s = Wj R --+ 0) we can make use of, 

S --+0 

1n(s) ~ ~(~) " 
n! 2 

Kn(s) ~ (n ~ I)! G)-n 

, 1 (s)n-1 
1n(s) ~ 2(n _ I)! "2 

, n! (S) -(n+l) 
Kn(s) ~ -"4 "2 
" n 1,,(s)Kn(s) ~ -2s2 

1~(s) ~ 2 (S) 211 
K~(s ) n!(n - I)! 2 

2 ' 
/ . Gn,m1n(s) 2 R2nB2 
zmss_o ]<:l(S) -. - n n 

/ . Gn,mG;,jI;(wjR) 2·Rn+;wmB B . 
tmss-+o I(~(wmR) -+ - Z Wj n 1 

limss_o [InKn]' --+ 0 

/ . B Ito JOn,m 
zmss_on H,m -+ 2Rn-l 
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reducing the 2D forces to 

1 
cos (n - i)B cos (n + i)B n . i7r 
-;:+-...,.(-- - - S1l1 -

p' _ _ 2_",,,,,,,,,, B 'B 'Rn+i 2(n-i) 2(n+i) .n2 _i2 2n 
02d - R L....t D D L n n,m z 

I,} 2 B flo .. cos n 
n rn t J _ ----::--_ 

2n 
:::: ) 

1 
cos (n - i)O cos (n + i)O n . i7r 

p' _ floR '" '" '" '" J, J . . 2(n - i) - 2(n + i) - n2 
- i 2 

S1l1 2n 
82d - 2 L.. L.. L.. L.. On,m O.,} 2 B . . cos n 

n m I J _ ----:::--_ 
2n 

n f! ) 
n = ! 

The total axial force for n=i (m=j) reduces to, 

(the case n f i PZ2d = 0). 

and the radial pressure is, 

l
cos(n-i)B c08(n +i)B n . i7r 

P" = _2_ '" '" '" '" nBn miBi 'Rn+i 2(n - i) - 2(n + i) - n
2 

- i
2 

81112n 
p,2d It R2 L.. L.. L.. L.. "J 2 0 o nmij _cosn 

2n 
or 

{

C08(n -i)0 cos(n+i)1I n . i7r 

p" _ flo '" '" '" '" J, J, . . 2(n - i) - 2(n + i) - n2 
- i2 81112n 

p,2d - 2 L..,.; L L..,.; L..,.; On,m Ol,l 2 
n m i j cos n(} 

2n 

n f!) 
n =! 

For a single function magnet (n=i, m=j), the maximum field occurs at r=R is, 

11 
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and the forces reduce to f , 

P' - R L L B~ax,lt,m 2 0 o - -- cos n 
2' /1-0 n 

It fn 

or 

, /1-o R L L JJIl,m 2 0 Po = --- --- cos n 
2. 4 n 

u m 

The total axial force, 

P = _ 7r R2 '" B;nax,1t 
Z2d ~ 

/1-0 It n 

and 

II 1 '" '" B;'ax,n,m 2 Pp 2d = -- L.- L.- cos nO 
'/1-0 n n m 

or 

" /1-0 '" '" J5n m 2 Pp,2d = -"4 L.- L.- --:- cos nO 
n m 

The stored energy in multipole windings 

Calculating the stored energy from 

we need to integrate the vector product over the current surface only : 

2~ L 2~ L 

E = J J j. Ada = J J J. ARdOdz 
o -L 0 - L 

(the cun·ent density is generally per unit area but when applied to thin windings is per unit length and the units 
of energy is J = T . A . m 2 ). 

f Forces in a Thin Cosine nO Winding - R.Meuser, Engineering Note M5266, November 15, 1978. 
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In performing the integration we shall make use of the following integrals : 

h {O J sin nO sin iOdO = 1f 

o 

2. {O J cos nO cos iOdO = 1f 

o 

n =I i} 
n = I 

L {O J sin WmZ sin Wj zdz = L 

-L 

In =lJ} 
In =J 

L {O J cos WmZ coswjzdz = L 

-L 

As a result of orthogonality the stored energy reduces from a 4 sum product to a 2 sum, indicating that there 
is NO MUTUAL INDUCTANCE between different multipole coils: 

1fL ~~ G~m 
h L 4 L.. L.. K'2(~ R) [Ii+I(wmR)Ki+l(WmR) + !;-l(wmR)Ki-l(WmR)]+ 

1 J J flo n m n m E = - J . ARdOdz = 
2 1fL ~~ G~m 2n2 

o -L +-4 L.. L.. [('2(' R) 2 In (wmR)Kn(wmR) 
Ito n m n Wm (wmR) 

and since 

the stored energy is 

or dividing by the volume the energy density is : 

e= 
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Finally in terms of current density : 

resulting in the same expression as for helical multi pole magnetsg 

EXAMPLE 

Combined Dipole n=1 and Quadrupole n=2 

The combined magnetic field of a nested dipole (n= 1) and quadrupole (n=2) magnets with the same period 
2Land single periodicity WI = f is, 

r~ : 

r~R : 

r=R : 

BT = -(GI,IWII;(wlr)sine+G2. IWII~(wll')sin20) COSWI Z 

Bo = - (G I I ~II(wj1') cos Ii + 2G2 I ~h(wl r ) cos 20) cos WI Z , r I r 

B. = (GI,lwlh(wlr)sinil + G2,IWlh(wj1') sin2(1) sinwl z 

g The Vector Potential and Stored Energy of Thin Cosine(nO) Helical Wiggler Magnet, LBL-38075, SC-MAG-
529, December 1995, 
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and 

Where, 

7r 
WI = L 

BI,I = dipole field 

2B2,I = gradient 

The forces acting on the dipole (incorporating the relation cos (I + CO~ 30 = ! cos3 (I) are, 

, 1 
P -
0- 2fJ-o R 

t=O.2 

~~~~~'''''=::' :'~'2~~:;'''''j::~ ' :::::::::: t=O~~O.6 
.' 

t=O.8 

t=O l t=l 
I 

. ! , .' ,. / 
/ / 

...:.:.:~~;:::,.-<.~~;; . .:.,:~;;;:;.::..:~~C~.~.~:.·:;'.~~~~~::-:-~>/ 
Figure 3 A polar pial of Ihe magnilude of P; al z;O in a dipole n; 1 according 10 

P; = CDS' B + t [CDS 0 + CO'~3')], 1;0 corresponds to a single funclion dipole (no quad) 

1 " 



and 

, 1 
P =--

z 2110R 

The total force acting on the dipole end is, 

and the radial stress is, 
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p" = /-lOR2 
p 2 

and the stored energy density, 
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, 

The forces acting on the quadrupole n=2 are, 
The azimuthal force, 

, 1 
Pe=

/loR 

t=O.2 

t=O.8 

t=l 

cos2 
WjZ 

t=O 

Figure 4 A polar plOI of Ihe magnitude of P; at z=O for a quad n=2, according to 

P; = cos2 20 - t [cos 0 - CO'~38) - ~l, t=O corresponds to a single funclion quad (no dipole) 
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The axial force, 

, 1 
P = --

z 2JLoR 

The total force on the quad end, 

The radial pressure is, 
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" ItoR2 
P = --

p 2 

and the stored energy density. 

e= 
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Simulation of Current density and flow lines 

To generate flow lines we make use of a technic first demonstrated by 1.Lasslet and W. Fawley of this 
laboratory. The character of the flow lines for a single function magnet n, will follow from the differential 
equation, 

Rd() Jo 

dz Jz 
Assuming the current density for magnet type n as, 

so that, 

and 

or, 

So that, 

J~ 1 ['" G",m . O' , '" nG",71/. 1 0 ' ] 
=-JloR ~J(~(w",R)smn smwmzeo+ ~ wmR J(;,(wmR)cosn cosw",zez 

Rd() 

dz "nGn •m 1 0 
L.. -w:::J( K' ( R) cos n cos w.". Z 

m=l In n Wm 

" On m . 

m
<-::l K~(w'mR) SlllWm Z 

ncosnO d() _ dz = 0 
sin n() R 2: ~ 1( ,G(n,m

R
) COSW"'z 

m=l III n Wrn 

( . ) ('" 1 G"m ) In sm n() + In D -- '( ' R) COSWmZ = const. 
m = 1 wmR J(n Wm 

const. 
sin n() = ----,--...".-----

" 1 Gn,1n 
m<-::1 wmR f(~(wmR) COSWm z 

and the flow lines are therefore, 

2: 1 Gn •m 

m=1 wmR f(~(wmR) 
sin nO = --""-7''--.",----- sin nOo 

" 1 On ,m 
L.. w.::R 1(' ( R) cos wm Z 

m=l m II Wm 

2: JOn ,m 

sin n() = 2: ~=1 sin nOo 
On m COSWmZ 

m= l I 

where 00 denotes the value of 0 at z=O. 

In a special case, we may choose special values for 10n•111 such lhat, 

Jo" (2M - 1 ) 1 
JO",m = 22(M 1) M _ m = JO"22(M 1) (M + m - l)!(M - m)! 

(2M -I)! 

2 1 



where M is the number of m terms used in a particular case and Jail is a constant. 

We note that in this particular case 

M 
1" (2M - I)! 2M-l 

22(M-l) L- (M + m _ l)!(M _ m)! COSW",Z = cos W1Z 
m=l 

1 M (2M - I)! 
--:22:7(M""'-_:-C1) L (M + m _ l)!(M _ m)! = 1 

m=l 

and therefore the current density is, 

M 
" ,,1 (2M - I)! 2M-l 
L- JOn,mCOSwmz = Jan L- 22(M-I) (M +m -l)!(M -m)! COSW",Z = Jo" cos W1Z 
m=l m=l 

With that the flow lines reduce to the simple expression, 

. 0 1 . 0 
S1I1 n = 2M 1 S111 n 0 

cos W1Z 

and the components of current density are, 

I~ ) J(O,Z)lr=R = JOn w~R(2M -1) cos2(M-l)wlzsinWl zsinnOeO 

cos2M- 1 WI Z cos nOe. 

On the following page we demonstrate 3 cases of flow lines for M=l, M=2 and M=3 used for a quad n=2. 
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Figure 5 View of a full period array of a quad with m=l only, a SlIllllllation over m=I ,2 , and m=I,2,3. These special 
cases revel the reduction in crowding between magnets at Ihe expense of an increased non-linear field. 
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Appendix A Units 

In MKS units : 

I : amp 
B : Tesla ( or Weber/meter2) 
L : meter 
F : newton 

~ = T·A J 
~= 

Useful conversions : 

T·A 
m 

multiply (N/m) by 5.710174e-3 to get (Ib/inch) 
multiply (N) by 0.22481 to get (Ib) 
multiply (N/m2) by 1.450384e---4 to get (psi) 
multiply (psi) by 6.8947 to get (MPascal) 
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